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Abstract

An implicit family of multi-step transversal linearization (MTL) methods is proposed for efficient and
numerically stable integration of nonlinear oscillators of interest in structural dynamics. The presently
developed method is a multi-step extension and further generalization of the locally transversal
linearization (LTL) method proposed earlier by Roy (Proceedings of the Academy of the Royal Society
(London) 457 (2001) 539–566), Roy and Ramachandra (Journal of Sound and Vibration 41 (2001a)
653–679, International Journal for Numerical Methods in Engineering 51 (2001b) 203–224) and Roy
(International Journal of Numerical Methods in Engineering 61 (2004) 764). The MTL-based linearization
is achieved through a non-unique replacement of the nonlinear part of the vector field by a conditionally
linear interpolating expansion of known accuracy, whose coefficients contain the discretized state variables
defined at a set of grid points. In the process, the nonlinear part of the vector field becomes a conditionally
determinable equivalent forcing function. The MTL-based linearized differential equations thus become
explicitly integrable. Based on the linearized solution, a set of algebraic, constraint equations are so formed
that transversal intersections of the linearized and nonlinearized solution manifolds occur at the multiple
grid points. The discretized state vectors are thus found as the zeros of the constraint equations. Simple
error estimates for the displacement and velocity vectors are provided and, in particular, it is shown that the
formal accuracy of the MTL methods as a function of the time step-size depends only on the error of
replacement of the nonlinear part of the vector field. Presently, only two different polynomial-based
interpolation schemes are employed for transversal linearization, viz. the Taylor-like interpolation and the
Lagrangian interpolation. While the Taylor-like interpolation leads to numerical ill-conditioning as the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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order of interpolation increases, the Lagrangian interpolation is shown to overcome this numerical
problem. Finally, the family of MTL methods is illustrated through limited numerical results for a couple of
harmonically driven workhorse oscillators, viz. the hardening Duffing and the Duffing–Holmes’ oscillators.
Comparisons with results obtained via a sixth-order Runge–Kutta method with adaptive time step-sizes are
also provided.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many of the available numerical integration techniques, applicable to nonlinear ordinary
differential equations (ODEs) of relevance to structural dynamics, are constructed through
explicit or implicit, Taylor-like expansions of the approximate solution vector in terms of a chosen
step size, h (fixed or variable). Some of these techniques are Runge–Kutta method and its
variations [25], the Newmark family of methods [1,2], the Adams–Bashforth and Adams–Moul-
ton methods, finite difference schemes, geometric integrators (i.e., those preserving the given first
integrals of motion) based on discrete gradients of functions [3] etc. A comprehensive review of
some of these techniques and many others may be found in Richtmyer and Morton [4] and
McLachlan et al. [5]. A specific difficulty of methods based on Taylor-series expansions is that
information regarding the first or higher derivatives of the vector field is needed. In the context of
finite element applications, one is required to repeatedly derive the tangent stiffness matrix (which
is essentially the Jacobian of a part of the nonlinear vector field constructed around a known or
guessed point in the space of the discretized state vectors) over each time step [6]. In addition to
the extremely laborious nature of such an exercise, there are obvious problems in applying such
approaches for problems with C0 continuity. Another approach of recent interest is via Lie group
theories [7,8]. Such approaches have been successfully applied to linear ODEs with explicitly time-
dependent vector fields (such as parametrically excited linear problems) and they often make use
of the Magnus or Fer expansions, which involve repeated Lie bracket operations and are quite
cumbersome to compute except for the first two or three terms. Zanna [9] has even proposed a
collocation method for nonlinear ODEs based on such expansions in another related
development. Marthinsen [10] has considered polynomial interpolations in Lie groups and
applied the concepts for integrating ODEs in terms of Lie algebra actions. An alternative, non-
gradient, implicit approach, referred to as ‘locally transversal linearization’ (LTL), has recently
been proposed by Roy [26], Roy and Ramachandra [11,12] and Ramachandra and Roy [13,14]. It
completely avoids the usage of Taylor-like expressions. The LTL approach is a single-step
procedure and reduces the nonlinear problem to an easily integrable linearized problem so that
the vector fields for both the linearized and nonlinear problems remain identical at the forward
discretization point, where an approximate solution vector needs to be found. Finally, a solution
for the nonlinear problem is derived by finding the roots of a set of constraint algebraic equations,
which in turn determine the point of transversal intersection (is the discretized state space) of the
linearized and nonlinear solution manifolds.

The present study may be viewed as an effort to further generalize and improve upon the LTL
procedure and thus proposed a multi-step extension of the procedure, herein referred to as the
‘multi-step transversal linearization’ (MTL) method. Unlike the LTL procedure, the nonlinear
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part of the vector field is non-uniquely replaced through a set of interpolating basis functions,
whose coefficients are expressible in terms of the discretized state variables over a multiple set of
grid points. The nonlinear part of the vector field is thus effectively transformed into an equivalent
and conditionally known forcing function. The choice of the interpolating basis functions is quite
arbitrary and may be tailored to suit the physics of the underlying dynamical system or the type of
solutions that the analyst needs to capture. In order to bring out the importance of the choice of
such interpolating functions on the accuracy and successful implementation of the MTL method,
two different polynomial-based interpolation schemes are presently adopted. The first scheme is
an interpolating expansion similar to the Taylor series and the second scheme is directly based on
a Lagrangian interpolation. The discretized state variables are then determined as the roots of a
system of constraint algebraic equations, which ensure transversal intersections of linearized and
nonlinear solution manifolds at the chosen set of multiple grid points. Since an exact solution of
the transversally linearized problem is known (i.e., can be computed to virtually any desired
degree of accuracy), it is shown that the formal accuracy of the MTL-based method as a function
of the time step-size is only dependent upon the error of replacing the nonlinear part of the vector
field through the interpolating basis set. Presently, a limited numerical illustration of the method
is provided for a few low-dimensional nonlinear oscillators in their periodic and chaotic regimes.
Comparisons with acceptable alternative solutions (obtained through a sixth-order Runge–Kutta
scheme with an adaptive step size) are provided and the relative advantages of the MTL-based
methods are highlighted with particular reference to the interpolating scheme used. Several useful
future extensions of the method are also briefly touched upon.
2. The methodology

For most nonlinear problems in structural dynamics (governed by partial differential
equations), one finally has to deal with a set of discretized, second-order, nonlinear ODEs
following a projection technique, such as Rayleigh–Ritz, Galerkin or wavelet-Galerkin. This
discretized system of nonlinear ODEs may be written as

f €X g þ ½C�f _X g þ ½K �fXg ¼ fQðfX g; f _X g; tÞg þ fF ðtÞg: (1)

In the above vector equations, ½C� and ½K � stand for the damping and stiffness matrices
respectively, QðfX g; f _X g; tÞ is a nonlinear vector function of its first two arguments, fF ðtÞg is an
externally applied force vector and fX g; f _X g 2 <n are respectively the n-dimensional displacement
and velocity vectors. Let the initial condition vector to integrate Eq. (1) be denoted as
fX ðt0Þg9fX 0g and f _X ðt0Þg9f _X 0g: Now, consider a closed-open sub-interval I1 ¼ ½t0;T jT4t0Þ of
the time axis and let it be ordered into p smaller intervals as t0ot1o � � �otp ¼ T : Presently, the
time step-size hi ¼ tiþ1  ti ¼ h is taken to be constant only for purposes of a simple exposition of
the basic concepts. The objective is now to derive an n-dimensional, linearized and easily
integrable system of second-order ODEs, whose response should, in a sense, be ‘close’ to
the response of Eq. (1) over I1: In particular, following the concept of transversal linearization
([11,12,15,26]), it is intended to derive the linearized ODEs such that the linearized and nonlinear
vector fields remain identical at all the ðp þ 1Þ points of discretization (grid points), viz.
t0; t1; . . . ; tp:
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Let the nonlinear and linearized flows, as parameterized by time t; be denoted by ft and f̄t

respectively. Thus, for the nonlinear flow, ft is essentially a CkðkX0Þ mapping (diffeomorphism)
on the associated (compact) manifold M:

ftðfX ; _X gÞ : M � R ! M (2)

Moreover, the following relations hold:

ft0
9f0 ¼ idM ;fhp

0fhp1

0fhp2
. . . 0ft0

¼ ftp
(3)

provided that the vector field is autonomous (note that a two n-dimension non-autonomous
vector field may be posed as ð2n þ 1Þ-dimensional autonomous one). The set of all such Ck

diffeomorphisms, ftðX ; _X Þ; under the operation of composition ‘o’ form a group, Gf: Now, the
second of Eq. (3) may be interpreted in terms of two different group actions. Whilst the first is the
R-action defined as

R ! Gf : t ! ft; (4a)

the second is known as the Z-action

Z ! Gf : j ! ftj
: (4b)

Here, Z denotes the set of all integers. In what follows, an MTL method is outlined whose
purpose is
(i)
 derive a system of conditionally linear ODEs whose solutions have the same Z-action for any
tj; j 2 Z:
(ii)
 to require the solutions of the conditionally linear ODEs to have a ‘close’ R-action as the
solutions of the nonlinear system.
At this stage, it is noted that the MTL-based linearized ODEs are only made to be conditionally
linear, being conditioned upon the precise resemblance of the nonlinear and linearized vector
fields at the grid points, tj; and not necessary elsewhere. In other words, this implies that the
conditionally linear flow would have to transversally intersect the nonlinear flow at least at the
grid points. However, unlike the LTL method proposed earlier [15,26], an additional condition of
the linearized solution remaining everywhere ‘close’ (with respect to a distance metric) to the
nonlinear flow will be imposed during the development of the MTL strategy.

As with any other numerical technique, the entire interval of the time axis over which the ODEs
are to be integrated, needs to be discretized. Presently the time interval of interest is ordered into
overlapping N sub-intervals as

I ¼ fI1; I2; . . . ; INg ¼ fðt0; t1; . . . ; tpÞ; ðtp; tpþ1; . . . ; t2pÞ; . . . ðtðN1Þp; tðN1Þpþ1; . . . ; tNpÞg:

The integer Nalso denotes the number of times the MTL-based linearization procedure has to
be applied so that an approximate solution over the desired interval I may be found and p denotes
the number of grid points in each sub-interval (excluding the point at which the initial conditions
are defined) covered by each application of the MTL procedure. To make the rest of the
presentation simpler without losing generality, p ¼ 2 is chosen for the discussion to follow.

In order to further motivate the development of the MTL method, it is instructive to expand the
response vectors in a Taylor series. For instance, an expansion of the jth displacement component
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jX ðt þ DtÞ in terms of the temporal increment Dt readily yields

jX ðt þ DtÞ ¼ jX ðtÞ þ j _X ðtÞDt þ j €X ðtÞ
Dt2

2
þ . . . : (5)

In other words, the solution space of approximated displacement and velocity variables
may be thought of as being spanned by the basis polynomials 1;Dt;Dt2;Dt3; . . . and so on.
However, in the multi-step strategy to be developed, a direct use of Taylor’s expansion is not
quite preferable, as it would necessitate repeated differentiations of the vector fields. More-
over, for jDtj51; these basis polynomials are of different orders of magnitude; this may be
responsible for introducing ill-conditioning (thereby leading to Gibbs phenomena) in the
algorithm, especially as the number of terms in the expansion (i.e., the integer parameter p)
increases. Nevertheless it is instructive to build the first version of the MTL method based on an
expansion similar to that in Eq. (5). Thus an inspection of Eq. (5) reveals that the following is a
hierarchical and complete expansion for the jth component, jQðX ; _X ; tÞ; of the nonlinear part of
the vector field:

jQEðX ; _X ; tÞ ¼ jb0 þ
jb1ðt  t0Þ þ

jb2ðt  t0Þ
2
þ jb3ðt  t0Þ

3
þ . . . : (6)

provided that the expansion is taken to infinity and that the vector field is interpreted as a
functional of t. In order that the above expansion can reproduce the originally nonlinear vector
function jQðX ; _X ; tÞ; the coefficient bi; i 2 Z are so determined as to satisfy the interpolating
property:

jQEðX k; _X k; tkÞ ¼
jQðX k; _X k; tkÞ9jQk; (7)

where, X k9X ðtkÞ; _X k9 _X ðtkÞ: Thus, for developing the MTL method with p ¼ 2; the first step is
to write down the following approximation for jQðX ; _X ; tÞ; valid over the interval ðt0; t2�:

jQðX ; _X ; tÞ � jQ
ð3Þ
M ðX k; _X k; tjk ¼ 0; 1; 2Þ ¼ jb0 þ

jb1ðt  t0Þ þ
jb2ðt  t0Þ

2: (8)

Following condition (7) one readily has

jb0 ¼
jQ0: (9a)

The other coefficient may be found from

h h2

2h ð2hÞ2

" #
jb1

jb2

( )
¼

jQ1 
jQ0

jQ2 
jQ0

( )
(9b)

while Eq. (9a) is an explicit relation for jb0; the other two coefficients jb1 and jb2 may be
explicitly found from Eq. (9b) once the discretized displacement vector components
X ðt1Þ9X 1;X 2 and the corresponding velocity components _X 1; _X 2 are known. In other words,
one has

jb1 ¼
jb1ðX 1;X 2; _X 1; _X 2Þ;

jb2 ¼
jb2ðX 1;X 2; _X 1

_X 2Þ: (10)

The second level MTL-based (i.e., p ¼ 2) linearized system of ODEs corresponding to the
nonlinear Eqs. (1) then takes the form

f €Y g þ ½C�f _Y g þ ½K�fY g ¼ fQ
ð3Þ
M ðX k; _X k; tjk ¼ 0; 1; 2Þg þ fFðtÞg: (11)
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It is noted that the first vector function on the right-hand side of Eq. (11) may be construed as a
conditionally known, equivalent forcing function, which replaces the nonlinear part of the vector
field.

Given that the approximation for jQðX ; _X ; tÞ; as in Eqs. (8) and (9), is essentially based on
(polynomial) interpolation similar to a Taylor expansion, such an implementation of the MTL
method will henceforth be referred to as the Taylor-MTL. However, there exists a possibility of
ill-conditioning and consequent numerical corruption of the Taylor-MTL method with an
increase in p, especially for jt  t0j51: In such a case, ill-conditioning occurs as the basis
polynomials, 1; ðt  t0Þ; ðt  t0Þ

2; . . . ; are of different orders of magnitudes. In order to bypass the
problem, one may make use of the Lagrangian interpolating polynomials. Thus restricting
attention to the first sub-interval characterized by the grid points I1 ¼ ft0; t1; t2g with p ¼ 2; the
MTL-based approximation for jQðX ; _X ; tÞ may be written as

jQ
ð3Þ
M ðX l ; _X l ; tjl ¼ 0; 1; 2Þ ¼

X2

k¼0

PkðtÞ
jQk; (12a)

where the Lagrangian polynomials (quadratic for p ¼ 2) PkðtÞ are given by

PkðtÞ ¼
Y2
l¼0
lak

ðt  tlÞ

ðtk  tlÞ
: (12b)

It is of interest to note that the discretized nonlinear vector fjQkg may be thought of as a set of
linear functionals fLkjk ¼ 0; 1; 2g acting on the elements (continuous functions) of the vector
space V3 spanned by the polynomial basis set fPkðtÞg such that

Lkð
jQ

ð3Þ
M ðX l ; _X l ; tjl ¼ 0; 1; 2ÞÞ ¼ ðjÞQk: (13)

These functionals form a basis for the 3D vector space V�
3; which is dual to V3 [24] and satisfy

the well-known relations:

LkðPlðtÞÞ ¼ dkl ; PkðtlÞ ¼ dkl ; k; l 2 ½0; 2�; (14)

where d denotes the Kronecker delta. The above relations imply duality of the two basis sets.
Adaptation of Eqs. (12)–(14) for any pX1 is straightforward.

Even though, interpolating Taylor and Lagrangian polynomials (ITPs and ILPs) probably
provide conceptually simplest routes to implement the MTL method, they are certainly not the
only (or, even the most efficient) way of doing so. Indeed, a more general setting for the
approximation of jQðX ; _X ; tÞ is obtainable as

jQðX ; _X ; tÞ ffi jQMðtÞ ¼
Xp

k¼0

jQðX k; _X k; tÞfkðtÞ; (15)

where the basis set ffkjk ¼ 0; . . . ; pg; indexed on I1; must satisfy fkðtlÞ ¼ dkl ; and X k ¼

X ðtkÞ; _X k ¼ _X ðtkÞ: Preferably, one should also have the normalization condition
R ph

0 fkðtÞdt ¼ 1:
In addition to ILPs, distributed approximating functionals (DAFs) [16] and interpolating wavelets
or interpolets [17] are a few possible choices for ffkg: Choosing such basis functions may help
accurately represent highly localized and infinitely smooth response characteristics in both
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physical and Fourier spaces. Moreover, the parameters of DAF basis functions could be tuned to
simulate any band-pass filter accurately. It has also been pointed out by Wei et al. [16] that DAF
basis functions work very accurately within a global or mesh-free framework. Accordingly the
precise choice of the basis functions should be decided by the nature of solutions that the user
wishes to capture and the type of solution framework (global or local) being employed. In fact, it
is this inherent non-uniqueness of the MTL method that should enable it to efficiently handle the
dynamics of a wider variety of engineering applications. However, the attention of the present
work will only be restricted to transversal linearization through ITPs and ILPs and a more
comprehensive coverage of the MTL method (including these issues) along with relevant
applications will be taken up elsewhere.

The solution of the linearized Eq. (11) may be performed in a 2n-dimensional (augmented)
phase space by introducing the 2n-dimensional vector: Ŷ ¼ ffY dg

T; fY vg
TgT 2 <2n: Moreover,

let X̂ ¼ ffX dg
T; fX vg

TgT 2 <2n; where the subscripts ‘d’ and ‘v’ are respectively used to denote
the displacement and velocity vectors. Thus, in the discussion to follow, the vectors X d and X v

would be used interchangeably with the vectors X and _X respectively. Eq. (11) may then be
recast as

f
_̂
Yg ¼ ½A�fŶ g þ fF̂ ðX̂ k; tÞg; (16)

where ½A� is a 2n � 2n-dimensional coefficient matrix given by

½A� ¼
½0� ½I �

½K� ½C�

" #
(17)

and F̂
� 	

is the 2n-dimensional conditional forcing vector, given by

fF̂g ¼
f0g

fQ
ð3Þ
M ðX̂ k; tÞg þ fFðtÞg

( )
; k ¼ 1; 2: (18)

In the above equations f0g is an n-dimensional zero vector, ½0� is an n � n-dimensional zero matrix
and ½I � is an n � n-dimensional identity matrix.

A conditional solution of Eq. (16) subject to the initial conditions ðY d0;Y v0Þ ¼ ðX d0;X v0Þ ¼

ðX 0; _X 0Þ 2 <2n is written as

Ŷ ðtÞ ¼ ½fðt; t0Þ� fŶ 0g þ

Z t

t0

½f1
ðs; t0Þ�fF̂ ðsÞgds

� �
; (19)

where Ŷ 09 Y d0

Y v0

n o
and fðt; t0Þ is the 2n � 2n-dimensional fundamental solution matrix (FSM),

obtainable from the matrix exponentiation:

½fðt; t0Þ� ¼ expf½A�ðt  t0Þg: (20)

For preservations of certain invariants of motion (such as the Hamiltonian functional for flows
preserving the phase space volume), it is sometimes required that the matrix exponentiation be
evaluated nearly exactly (i.e., to a vary high accuracy). In such a case, an eigensolution of the
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matrix A is performed to arrive at its Jordan canonical form

J ¼ P1AP ¼

J1 0 . . . 0

0 J2 . . . 0

..

. ..
. ..

. ..
.

0 . . . . . . Jm

2
666664

3
777775; (21a)

where P is the (column-wise arranged) invertible matrix of eigenvectors and J1; . . . ; Jm are the
Jordan blocks associated with the different eigenvalues of A. Then the matrix exponentiation is
computable via the identity

exp ðAtÞ ¼ P exp ðJtÞP1: (21b)

It is recalled that exponentiation, exp ðJtÞ; of the Jordan matrix J may be readily performed by
writing J as a sum of diagonal and nilpotent matrices. It is also noted that the present
development of the MTL method requires that the eigensolution of A is done only once during the
entire process of numerical integration. Nevertheless, given that most of the problems of relevance
in structural dynamics are non-Hamiltonian (i.e., with viscous damping), a more expedient way to
compute matrix exponentiation may be to directly use a Taylor scheme:

½fðt; t0Þ� ¼ ½Ī � þ ½A�ðt  t0Þ þ ½A�2
ðt  t0Þ

2

2!
þ ½A�3

ðt  t0Þ
3

6!
þ � � � ; (21c)

where ½Ī � is a 2n � 2n-dimensional identity matrix. A detailed account of 19 different
schemes of computing the matrix exponential as well as their limitations is provided in a
recent article [18]. Now, within the MTL framework, the following constraint conditions are
now imposed:

Y k ¼ Y dk9Y dðtkÞ ¼ X dk;

_Y k ¼ Y vk9Y vðtkÞ ¼ X vk; k ¼ 1; 2: ð22Þ

Use of Eq. (19) in Eq. (22) results in 4n coupled nonlinear algebraic equations in as many
unknown quantities, viz. X d1;X d2;X v1;X v2 for p ¼ 2: One may thus arrive at desired solution
vector by determining the zeros of Eq. (22), say with a Newton–Raphson or a nonlinear iterative
technique. In general, for the pth level MTL method, one may have to solve for a maximum of 2pn
nonlinear algebraic equations. Attention may now be focused on the tangent maps of nonlinear
and MTL-based linearized vector fields, respectively denoted as TX̂ i

Vn and TX̂ i
V l ; where X̂ i ¼

X di

X vi

n o
is a point in the 2n-dimensional phase space at which the tangent maps are constructed.

Thus, one has (using Eq. (1))

dX̂ jX̂¼X̂ i
¼ ½A�fdX̂g þ DX̂¼X̂ i

f0g

fQðX̂ ; tÞg

( )" #
fdX̂ g (23a)

and

dŶ jŶ¼X̂ i
¼ ½A�fdŶ g; (23b)
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Fig. 1. A schematic representation of the MTL-based (p ¼ 2) approximation for 1D dynamical system.
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where, dX̂ ; dŶ 2 <2n are infinitesimally admissible variations on X̂9 X d

X v

n o
and Ŷ9 Y d

Y v

n o
respectively and DX̂ stands for the Jacobian of the associated vector with respect to the

components of X̂ : The tangent vectors, TX̂ i
Vn and TŶ i

Vl ; are respectively given by the vector

fields of Eqs. (23a) and (23b). It is thus clear that for nearly all non-trivial cases (i.e., except when

X̂ ðtÞ ¼ Ŷ ðtÞ ¼ f0g), one has TX̂ i
VnaTX̂ i

Vl : In other words, TX̂ i
Vn and TX̂ i

Vl are transversal to

each other for nearly any choice of X̂ i 2 <2n: Zeros of the algebraic Eqs. (22) may then be
interpreted as the points of transversal intersections of the nonlinear and linearized solution
manifolds in the 2n-dimensional phase space. A schematic representation of the idea for a 1D
dynamical system is shown in Fig. 1 for p ¼ 2:

2.1. Error estimates

A straightforward estimation of local and global error orders in the MTL-based family of
linearization procedures is possible based on appropriate Taylor expansions of the displacement
and velocity components. To facilitate such an exercise, the governing nonlinear equations of
motion are re-written in the form

€X ¼ LðX ; _X ; tÞ þ QðX ; _X ; tÞ; (24)

where L and Q are respectively the linear and nonlinear vector functions of X ; _X 2<n: In particular,
a comparison with the governing equation yields the following form for the linear operator, L:

LðX ; _X ; tÞ ¼ ½C�f _X g  ½K �fXg þ fF ðtÞg: (25)

Following the pth level MTL concept, the vector function QðX ; _X ; tÞ may be related to its
linearized counterpart, Q

ðpÞ
M ðX k; _X k; tjk 2 ½0; p�Þ; through the equation

QðX ; _X ; tÞ ¼ Q
ðpÞ
M ðX K ; _X K ; tÞ þ R

ðpÞ
M ðtÞ; X K9X ðtK Þ; _X K9 _X ðtK Þ: (26)

The last term, R
ðpÞ
M ðtÞ; on the right-hand side of the above equation is the conditionally

determined remainder term of order ðt  t0Þ
pþ1 for the pth level MTL procedure. At this stage, the

jth component, jX ðtÞ 2 <; of the displacement vector X ðtÞ may be Taylor expanded as

jX ðt þ DtÞ ¼ jX ðtÞ þ j _X ðtÞDt þ j €X
Dt2

2!
þ j _ _ _

X
Dt3

3!
þ � � � þ

dr
ðjX ðtÞÞ

dtr
:
ðDtÞr

r!
þ RrðtÞ; (27)
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where RrðtÞ is the remainder term of order ðDtÞrþ1: Appropriate continuity, differentiability and
bounded-ness criteria are implicitly imposed on the dependent variables and functions in the
above equation and the ones to follow. Now, it is noted that j €X ðtÞ in the third term of the right-
hand side of Eq. (27) may be represented as

j €X ðtÞ ¼ jLðX ;X ; tÞ þ jQ
ðpÞ
M ðX k; _X k; tÞ þ

jR
ðpÞ
M ðtÞ: (28)

Similarly, one may write

j _ _ _

XðtÞ ¼ jLX ðX ; _X ; tÞ _X þ jL _X ðX ; _X ; tÞ €X þ jLtðX ; _X ; tÞ þ j _Q
ðpÞ

M ðX k; _X k; tÞ þ
j _R

ðpÞ

M ðtÞ; (29)

where

jLX ð�Þ ¼
qðjLð�ÞÞ
qX

; jL _X ð�Þ ¼
qðjLð�ÞÞ

q _X
; jLtð�Þ ¼

qðjLð�ÞÞ
qt

and

j _Q
ðpÞ

M ð�Þ ¼
dðjQ

ðpÞ
M Þ

qt
:

It may be observed that Eqs. (28) and (29), conditionally determining j €X ðtÞ and j _ _ _

XðtÞ
respectively, are exact subject to knowledge of the discretized state vectors fX kg and f _X kg at
t ¼ tk; k 2 ½1; p�: It may be recalled that these vectors are determined via constraint (algebraic)
Eqs. (22) within the MTL framework. Similar expressions for higher-order derivatives
dn=dtnðjX ðtÞÞ may also be written. The MTL-based approximations for these derivatives
(second-order and higher) may be recovered by removing the last remainder term, jR

ðpÞ
M ðtÞ; or

its derivatives from Eqs. (28), (29), etc.
In order to determine the local and global error orders in displacement computations through

the pth level MTL, it suffices to substitute expressions (28), (29) and those for higher-order
derivatives into the Taylor expression (27) and determine the lowest order (in terms of the integral

exponents of Dt) of the terms containing R
ðpÞ
M ðtÞ or its derivatives. For further elaboration, it is

convenient to consider, say, p ¼ 2; which corresponds to R
ð2Þ
M ðtÞ � OðDt3Þ: Let rXp þ 1 in Eq. (27).

Substitution of Eq. (28) for j €X ðtÞ in Eq. (27) leads to a term of the form jR
ðpÞ
M ðtÞDt2=2! � OðDt5Þ;

which may be verified as one of the lowest order terms involving R
ðpÞ
M ðtÞ: Similarly, substitution of

Eq. (29) for j _ _ _

XðtÞ in Eq. (27) leads to a term j _R
ðpÞ

M ðtÞDt3=3! � OðDt5Þ (noting that j _R
ðpÞ

M ðtÞ � OðDt2Þ),

which is another lowest order term involving jR
ðpÞ
M ðtÞ or its derivatives. Continuing this way, one

may conclude that the local displacement error,R
ð2Þ
d ; via the second level MTL method is given by

R
ð2Þ
d � OðDt5Þ: (30)

Generalizing in this way, one may readily obtain the local displacement error order for pth
(pX1) level MTL method as

R
ðpÞ
d � OðDtpþ3Þ: (31)

A similar argument for the velocity error (local) yields

R
ðpÞ
V � OðDtpþ2Þ: (32)

The global error orders would be one integral order less than their local counterparts.
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It is noted that many dynamical problems in structural dynamics may not have a sufficiently
differentiable response. In such cases, the error order arguments based on Taylor expansions
would not remain valid. Even in such cases, the MTL-based linearization would satisfy the
nonlinear vector fields at the points of discretization and thus would remain numerically
implementable. This is however not true for many of the available integration procedures which
need a Taylor-like expansion for construction of the discrete point-to-point mapping.
3. Numerical results

The usefulness and some of the relative advantages of a new integration scheme are best
appreciated through its numerical applications for certain problem of relevance in structural
dynamics. Since the proposed family of MTL schemes has a fairly straightforward implementa-
tion for oscillators of any dimension, only a few single degree of freedom (sdof) nonlinear
oscillators are presently considered to keep the demonstration simple and accordingly bring out a
few essential features of the proposed schemes. Thus, to begin with, consider a viscously damped,
hardening Duffing (HD) oscillator of the form

€x þ 2p�1 _x þ 4p2�2ðx þ x3Þ ¼ 4p2�3 cos 2pt: (33)

Here the nonlinear part of the vector field is given by cubic, scalar (symmetrical) function

Qðx; _x; tÞ ¼ QðxÞ ¼ 4p2�2x3: (34)

The details of implementation of the MTL-Taylor scheme are provided below for purposes of a
ready reference. The essence of applying the MTL-Lagrangian scheme remains precisely the same
except for a modification of Eq. (36), wherein Lagrangian interpolating polynomials are used to
approximately expand QðX ; _X ; tÞ: The pth level linearized form based on MTL-Taylor of Eq. (33)
may be written as

€y þ 2p�1 _y þ 4p2�2y ¼ 4p2�3 cos 2pt  4p2�2Q
ðpÞ
M ; (35)

where, one has

Q
ðpÞ
M ðtÞ ¼ b0 þ b1ðt  t0Þ þ b2ðt  t0Þ

2
þ � � � þ bpðt  t0Þ

p; (36)

where, b0 ¼ x3ðt0Þ; b1; . . . ; bp are conditionally determined as linear functions of the cubes of
discretized variables xðtkÞ; k 2 ½1; p�; by solving the system of p linear equations

ðt  t0Þ ðt  t0Þ
2 . . . ðt  t0Þ

p

2ðt  t0Þ 22ðt  t0Þ
2 . . . 2pðt  t0Þ

p

..

. ..
. ..

.

..

. ..
. ..

.

..

. ..
. ..

.

pðt  t0Þ p2ðt  t0Þ
2 . . . ppðt  t0Þ

p

2
666666666664

3
777777777775

b1

b2

..

.

..

.

..

.

bp

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

x3ðt1Þ  x3ðt0Þ

x3ðt2Þ  x3ðt0Þ

..

.

..

.

..

.

x3ðtpÞ  x3ðt0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(37)
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for any given time t: Solutions of the linearized system (Eq. (35)) follow the general scheme as
outlined in the last section. Accordingly, Eq. (35) is first written in the state-space form

_yd

_yv

( )
¼ f _Y g ¼ ½A�fY g þ fF̂ ðt;x3

kjk 2 ½1; p�g: (38)

The coefficient matrix ½A� is given by

½A� ¼
0 1

4p2�2 2p�1

" #
(39)

and the augmented, conditional force vector F̂ 2 <2 is given by

fF̂ ðt;x3
kÞg

T ¼ f0; 4p2�3 cos 2pt  4p2�2Q
ðpÞ
M ðx3

k; tÞg: (40)

In the above equations, one has xk9xðtkÞ; k 2 ½0; p�: Denoting the fundamental solutions matrix
(FSM) as

½fðt; t0Þ� ¼ exp½Aðt  t0Þ�: (41)

The solution to the ODEs (35) is then written as

ydðtÞ

yvðtÞ

( )
¼ ½fðt; t0Þ�

x0

_x0

( )
þ

Z t

t0

½f1
ðs; t0Þ�fF̂ ðs;x3

kÞgds

" #
: (42)

The desired nonlinear algebraic equations (constraint equations) to determine xm;m 2 ½1; p� are
then written as

xm ¼ f11ðtk; t0Þx0 þ f12ðtk; t0Þ _x0 þ f11ðtk; t0Þ

Z tk

t0

f1
12 ðs; t0ÞF̂2ðs;x

3
kÞds

� �

þ f12ðtk; t0Þ

Z tk

t0

f1
22 ðs; t0ÞF̂2ðs; x

3
kÞds

� �
; k ¼ 0; . . . ; p; ð43Þ

where, F̂2 is the second component of the vector F̂ given by Eq. (40). Presently, a
Newton–Raphson scheme is used to determine the roots of the system of Eqs. (43). Following
the determination of xm; the discretized velocity components, _xm9 _xðtmÞ; may be recovered from
the second component equation of the vector Eqs. (42) by noting that yvk9 _yðtkÞ ¼ _xk for all
k 2 ½0; p�: The above procedure, applicable to the sub-interval I1 may be similarly repeated over
the following sub-intervals I2; I3; . . . and so on, to obtain the MTL-based approximation to the
solution over any interval of the time axis.

In all the examples to follow, a uniform time step size h ¼ 0:01 has been adopted unless
explicitly stated otherwise. In Figs. 2 and 3, a couple of typically one-periodic orbits of the HD
oscillator are plotted via MTL-Taylor and MTL-Lagrangian methods corresponding to p ¼ 2 and
3 and compared with a sixth order explicit Runge–Kutta method [19], which is often considered to
be the most efficient in the family of Runge–Kutta methods [20]. Even a visual comparison of
Figs. 3(a) and (c) is enough to show that the MTL-Taylor scheme shows poorer correspondence
with the Runge–Kutta scheme (which is the most accurate scheme in this example) than the
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Fig. 2. A typically one-periodic regime of the hardening Duffing oscillator; �1 ¼ 0:25; �2 ¼ 1:0; �3 ¼ 0:3: (a)

displacement history via MTL-Taylor; (b) velocity history via MTL-Taylor; (c) displacement history via MTL-

Lagrangian; (d) velocity history via MTL-Lagrangian.

D. Roy, R. Kumar / Journal of Sound and Vibration 287 (2005) 203–226 215
MTL-Lagrangian scheme. The relative inaccuracy of the MTL-Taylor scheme with reference to its
Lagrangian counterpart is also brought out in the phase plane diagrams of Figs. 3(e) and (f).

The well-known fact that chaotic trajectories are exponentially sensitive (in a local sense) to
small numerical errors may be presently exploited in both to ascertain the relative numerical
stability of the two versions of the MTL method. For instance, if one is integrating a dynamical
system in its chaotic regime with two different numerical schemes (of comparable orders of
accuracy), such that the integrated trajectories start from the same initial condition in both the
cases, then the time interval over which the two trajectories remain ‘close’ to each other (with
respect to a distance measure such as the Euclidean norm) is a measure of numerical stability (in
terms of growth of local errors) of the methods. Figs. 4(e)–(f) show time histories of one such
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Fig. 3. A typically large one-periodic regime of the hardening Duffing oscillator; �1 ¼ 0:25; �2 ¼ 1:0; �3 ¼ 8:0:

D. Roy, R. Kumar / Journal of Sound and Vibration 287 (2005) 203–226216



ARTICLE IN PRESS

D. Roy, R. Kumar / Journal of Sound and Vibration 287 (2005) 203–226 217
trajectory, integrated via MTL-Taylor (p ¼ 2 and 3), MTL-Lagrangian (p ¼ 2; 3 and 6) and sixth-
order Runge–Kutta (all starting from the same initial condition). Even from a visual inspection of
the time histories, it is clear that trajectories integrated via the MTL-Lagrangian scheme with
p ¼ 2; 3 remain consistently closer to those via Runge–Kutta than the ones integrated via MTL-
Taylor with p ¼ 2; 3 do. Figs. 4(e) and (f) show displacement and velocity histories of the same
trajectory via sixth-order Runge–Kutta and MTL-Lagrangian with p ¼ 6 (i.e., two methods of the
same formal order of accuracy). The integrated chaotic trajectories via these two schemes show a
remarkably closer correspondence (over longer durations) than the ones in Figs. 4(c) and (d). This
lends numerical credence to an improved accuracy of the MTL-Lagrangian scheme with
increasing values of p. Such an improvement is not observable with MTL-Taylor schemes since
Taylor basis polynomials lead to ill-conditioning for higher values of p. That the closeness of
chaotic orbits integrated through Runge–Kutta and MTL-Lagrangian is always far higher than
the closeness of those integrated through Runge–Kutta and MTL-Taylor is more conspicuously
seen in the phase plots of Figs. 5(a)–(f).

In order to have a better quantitative appreciation of the relative improvement of numerical
accuracy of the MTL-Lagrangian family of schemes with increasing p, consider the instantaneous
(Euclidean) error norm given by

EI;IIðtÞ ¼ 1
2
ððxIðtÞ  xIIðtÞÞ2 þ ð _xIðtÞ  _xIIðtÞÞ2Þ1=2; (44)

where the superscripts I and II respectively denote method I and method II, respectively. Owing to
a locally exponential separation of nearby trajectories in the chaotic regime, it is anticipated that
the above norm will grow with time for a chaotic orbit integrated from the same initial condition
via two different numerical schemes. This is due to the difference in floating point operations
employed by two such methods thereby leading to exponential magnifications of small numerical
differences (owing to the positivity of the largest Lyapunov’s exponent). This is unlike the case of
periodic orbits wherein the error norm is expected to remain high in the initial stages and stabilize
to a periodic solution (probably with smaller amplitudes) as the steady state is reached. Figs. 6(a)
and (b) show the histories of relative error norms between MTL-Lagrangian schemes with
different p while integrating a typically chaotic orbit of the hardening Duffing oscillator with the
same initial condition. It is clear that relative errors between MTL-Lagrangian methods with
higher values of p (say, with p ¼ 6 and 7) grow much less than those between methods with lower
values of p.

Being an implicit method which has the added advantage of ensuring the identity of the
linearized and nonlinear vector fields at all the points of discretization, the MTL method remains
accurate even under relatively larger time step sizes for which the approximations via explicit
Runge–Kutta formulations may simply blow away. This observation is quite generic about MTL
methods and is valid irrespective of the type of basis functions used to expand the nonlinear part
of the vector field. Numerical demonstrations of this observation are provided using the MTL-
Taylor method in Figs. 7 and 8 for a periodic case and a chaotic case, respectively. In other words,
the MTL family of methods has a conspicuously higher numerical stability under higher step-sizes
than the Runge–Kutta algorithms.

Yet another advantage of the MTL-based linearization is that a Hamiltonian system
(nonlinear) remains so even after the linearization. However, the Hamiltonian for the linearized
flow differs from that of the nonlinear flow in terms of certain integral powers of the time step, h;
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Fig. 4. Displacement and velocity histories of a typically chaotic regime of the hardening Duffing oscillator: �1 ¼ 0:25;
�2 ¼ 1:0; �3 ¼ 42:0:
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and this difference is readily computable. Consider, for instance, undamped Duffing (hardening)
oscillators, i.e., Eq. (33) with �1 ¼ 0: An absence of viscous damping implies that the divergence of
the vector field becomes zero and thus the highest Lyapunov exponent is higher. Thus if the
Hamiltonian Duffing oscillator exhibits chaos, exponential separation of nearby trajectories is
more pronounced compared to the same oscillator with positive viscous damping. As numerically
illustrated earlier for chaotic solutions of a damped Duffing oscillator, the exponential divergence
takes more time as the initial conditions are closer. Figs. 9(a) and (b) show the time histories of
displacement of two chaotic trajectories of the Hamiltonian system, originated through the sixth
level MTL-Lagrangian scheme (p ¼ 6) and sixth-order Runge–Kutta method. It is evident that
the exponential divergence of trajectories integrated through MTL takes longer to occur. It is
conjectured that the preservation of the given form of the vector field at all the points of
discretization (in the MTL method) is one of the main factors responsible for a slower divergence
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of nearby trajectories as compared to the Runge–Kutta method. As was noted previously, such a
numerical stability of the MTL method is observable, even though in a smaller measure, when
�140 as well (i.e., when dissipative chaos occurs).

As a second numerical example, a Duffing–Holmes’ oscillator, which has two potential wells in
the unperturbed (un-damped, unforced) phase plane, is considered. The oscillator is governed by
the following second-order nonlinear ODE

€x þ 2p�1 _x þ 4p2�2ðx
3  xÞ ¼ 4p2�3 cos 2pt: (45)

Derivations of the MTL-based linearized forms (via Taylor and Lagrangian schemes) and their
subsequent solutions follow precisely the same steps as for the previous example and need not be
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elaborated further. For sufficiently small values of the forcing amplitude parameter, �3; the
harmonically forced, damped oscillator exhibits a couple of egg-shaped 1-periodic orbits,
symmetrically placed around the x-axis in the associated phase plane, x  _x: While Figs. 10(a)
and (b) show these orbits via MTL-Taylor schemes with p ¼ 2 and 3 as well as comparisons with
the sixth-order Runge–Kutta method, Fig. 10(c) shows phase plots of the same orbits through
MTL-Lagrangian schemes corresponding to p ¼ 3 and 4. The relatively higher accuracy of the
MTL-Lagrangian family is again clear even from visual comparisons of these figures. For higher
values of �3; chaotic solutions are possible due to homoclinic bifurcations of the perturbed
separatrix and consequent diffusion of trajectories amongst the two potential wells. The strange
attractor of a typically chaotic orbit, obtained via MTL-Taylor and Runge–Kutta methods, are
plotted in Figs. 11(a) and (b). In this case too, the MTL-Lagrangian family of schemes may be
shown to perform better. This is illustrated through the instantaneous error history plots reported
in Figs. 11(c) and (d). Of particular interest is the drastic reduction of the relative error norm
between MTL-Lagrangian schemes with p ¼ 6 and 7 with reference to that between MTL-
Lagrangian with p ¼ 2 and Runge–Kutta.

Indeed, it has been numerically observed for the case of the hardening Duffing oscillator
that the MTL-Taylor methods corresponding to fourth and higher levels require very small
step sizes of the order of 0(104,105) for convergence. In fact, for highly oscillatory cases
(such as in the chaotic regime), the Newton–Raphson method may not converge at all for
MTL-Taylor schemes with pX4: Thus, out of these two families of schemes, the MTL-
Lagrangian family is preferable from the points of view of higher accuracy and numerical
stability.
4. Discussion and concluding remarks

A family of implicit, multi-step transversal linearization (MTL) methods is proposed for
numerically accurate, computationally efficient and semi-analytical integrations of nonlinear
mechanical oscillators of significance in engineering dynamics. The basis of the linearization is the
replacement of the nonlinear part of the vector field via a conditionally linearized one. Using a set
of interpolating basis functions, the conditionally linearized replacement is derived such that it
precisely reproduces the nonlinear part of the vector field at all the grid points. The conditional
nature of this replacement arises from the fact that the coefficients of the interpolating basis
functions are expressible in terms of the unknown, discretized state vectors at the grid points. A
specific advantage of MTL methods lies in the flexibility with which the functional or operator
interpolation scheme for the nonlinear part of the vector field can be chosen. Presently Taylor and
Lagrangian basis polynomials are used and numerically explored for interpolating the nonlinear
part of the vector field. Since tangent spaces of the nonlinear and conditionally linear vector fields
are not identical (i.e., transversal) almost everywhere in the associated phase space, and, in
particular, at the grid points, the unknown state vectors are determined by constructing a set of
algebraic constraint equations, which ensure transversal intersections of the linearized and
nonlinear solution manifolds. The constraint equations are in the form of a set of nonlinear
(transcendental) algebraic equations, whose roots may be found through a Newton–Raphson or a
nonlinear iterative method.
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otherwise mentioned). A loss of accuracy of MTL-Taylor ðp ¼ 3Þ vis-à-vis the MTL-Lagrangian for h ¼ 0:01 is noted.

D. Roy, R. Kumar / Journal of Sound and Vibration 287 (2005) 203–226 223
Simple estimates of error in displacement and velocity components, as computed via the MTL
family methods, have been provided. While derivation of higher-order MTL methods is quite
straightforward and merely involves increasing the order of interpolation, numerical instability
may creep in for MTL-Taylor schemes beyond a certain order. It is however demonstrated that
higher-order versions of the MTL-Lagrange method do not suffer from (or, is far less prone to)
such drawbacks. The MTL family of methods has been shown to have a generically superior
numerical stability than Runge–Kutta methods, especially for larger time step sizes. Yet another
additional advantage of these methods is that the linearization is performed in such a way so as to
preserve the (possibly) Hamiltonian nature of the oscillator. This aspect assumes particular
importance for integrations performed over long durations. A host of numerical illustrations of
the procedures for a couple of sdof oscillators, viz. the Duffing and the Duffing–Holmes’
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oscillators, are provided to bring out some of their useful features. The numerical implementation
of MTL methods remains precisely the same irrespective of the dimensionality of the oscillator
concerned.

It is possible to exploit the non-uniqueness aspect of an MTL-based formulation and thus
develop a MTL family of schemes using the Magnus formula within a Lie algebraic framework. In
such a case, the nonlinear part of the vector field may be decomposed as products of time-
dependent matrices times the response (displacement and velocity) vectors. The linearized
dynamical system would then have (conditionally) parametric terms and its solution may be
found, to any order of accuracy, using the Magnus or Fer formulas [21]. This extension would
hopefully allow the MTL family further flexibility to adapt even better to complex dynamical
situations. However, one difficulty with such an approach could be in the form of the significantly
more computational overhead associated with repeated evaluations of the linearized stiffness
matrix over each time step. A systematic study on such a form of the MTL method is now under
progress. Another objective of immediate interest to the authors is to modify and apply a
variation of the present scheme for numerical integrations of the dynamical equations of motion
for beams undergoing finite strains [22]. In particular, given that such equations are formulated in
terms of both displacement and rotational variables and that rotations (unlike displacements)
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evolve on nonlinear manifolds, a direct adaptation of the MTL strategy proposed here for such
problems is not possible. This is due to the fact that rotations cannot be interpolated in the same
way as displacements [23]. However, nonlinear manifolds have locally vector space structures and
this observation may be exploited to modify and extend the present formulations to such
problems of considerable contemporary interest.
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